Therapeutic Targets Database

QSAR Model

Target Name	5-Lipoxygenase
Target TTD ID	TTDS00112

Target Species	Human
Chemical Type	1-phenyl[2H]-tetrahydro-triazine-3-one analogues
Mode of Action	Inhibitor
QSAR Model 1	$\begin{split} \log 1/\mathrm{IC}_{50} &= 5.7242 \times 10^{-4} (\pm 1.6440 \times 10^{-4}) \mathrm{W} - 0.6957 \ (\pm 0.1504) \mathrm{MR}_2 \\ & + 0.8529 (\pm 0.1409) \pi_{3'} + 0.4773 \ (\pm 0.0746) \ \pi_{5'} + 0.3533 \ (\pm 0.0530) \ \pi_5 \\ & + 0.4473 \ (\pm 0.1587) \ \Sigma \sigma_\mathrm{m} \ - 0.6256 (\pm 0.0421) \Sigma \sigma_\mathrm{p} \\ & + 0.8187 (\pm 0.1136) \ \mathrm{Ip}_3 + 4.4393 \end{split}$ $\begin{split} n &= 60, \ \mathrm{SE} = 0.2316, \ R_\mathrm{A}^2 = 0.7247, R = 0.8729, \ F = 20.414 \end{split}$
QSAR Model 2	$\begin{split} \mathrm{IC}_{50} &= 4.0849 \times 10^{-4} (\pm 2.0780 \times 10^{-4}) \mathrm{W} - 0.6496 (\pm 0.1537) \mathrm{MR}_2 \\ &+ 0.0847 (\pm 0.0683) \mathrm{MR}_4 + 0.8699 \pi_{3'} + 0.5021 (\pm 0.0766) \pi_{5'} + 0.3739 (\pm 0.0551) \pi_5 \\ &+ 0.4751 (\pm 0.1592) \Sigma \sigma_\mathrm{m} - 0.6786 (\pm 0.4117) \Sigma \sigma_\mathrm{p} + 0.7406 (\pm 0.1284) \mathrm{Ip}_3 + 4.4582 \\ n &= 60, \mathrm{SE} = 0.2302, R_\mathrm{A}^2 = 0.7281, R = 0.8772, F = 18.551 \end{split}$
QSAR Model 3	$\begin{split} \log 1/\mathrm{IC}_{50} &= 0.0010 (\pm 7.9403 \times 10^{-4}) \log \mathrm{RB} - 0.6349 (\pm 0.1524) \mathrm{MR}_2 \\ &+ 0.1269 (\pm 0.0693) \mathrm{MR}_4 + 0.8734 (\pm 0.1131) \pi_5 + 0.4885 (\pm 0.1552) \Sigma \sigma_\mathrm{m} \\ &- 0.7100 (\pm 0.4014) \Sigma \sigma_\mathrm{p} + 0.6954 (\pm 0.1256) \mathrm{Ip}_3 - 0.2767 (\pm 0.1352) \mathrm{Ip}_4 + 4.50 \\ n &= 60, \mathrm{SE} = 0.2242, R_\mathrm{A}^2 = 0.7421, R = 0.8865, F = 17.981 \end{split}$
QSAR Model 4	$\begin{split} \log 1/\mathrm{IC}_{50} &= 2.8515 \times 10^{-4} (\pm 1.8793 \times 10^{-4}) \mathrm{W} - 0.6603 \ (\pm 0.1341) \mathrm{MR}_2 \\ & + 0.0929 (\pm 0.0621) \mathrm{MR}_4 + 0.7483 \ (\pm 0.1272) \pi_{3'} + 0.6403 (\pm 0.0754) \pi_{5'} \\ & + 0.5321 (\pm 0.1017) \pi_5 + 0.6685 (\pm 0.1471) \Sigma \sigma_\mathrm{m} - 0.78 \ (\pm 0.3588) \Sigma \sigma_\mathrm{p} \\ & - 0.2792 (\pm 0.0771) \mathrm{Ip}_2 + 0.6501 \ (\pm 0.1138) \ \mathrm{Ip}_3 - 0.3088 \ (\pm 0.1214) \ \mathrm{Ip}_4 + 4.6535 \\ n &= 60, \mathrm{SE} = 0.2007, R_\mathrm{A}^2 = 0.7944, R = 0.9126, F = 21, 728 \end{split}$

	$\log 1/IC_{50} = 4.2510 \times 10^{-4} (\pm 1.2756 \times 10^{-4}) W - 0.5156(\pm 0.0997) MR_2$
	+0.0732 (±0.0415) MR ₄ +0.7097 (±0.0859) $\pi_{3'}$ +0.6150 (±0.0524) $\pi_{5'}$
QSAR	$+0.5351(\pm 0.0679) \qquad \pi_5 + 0.8970 \qquad (\pm 0.1059) \qquad \Sigma \sigma_m - 0.9132 \qquad (\pm 0.2396) \qquad \Sigma \sigma_p$
Model 5	$-0.2670 (\pm 0.0518) Ip_2 + 0.6715 \ (\pm 0.0762) \ Ip_3 - 0.3648 \ (\pm 0.0821) \ Ip_4 + 4.5975$
	$n = 54$, SE = 0.1325, $R_{\rm A}^2 = 0.9060, R = 0.9620, F = 47.446$
	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon
Molecular Descriptor	Molar refractivity (MR) of 2- and 4- substituents (MR ₂ and MR ₄), lipophilic effects of 3'-, 5'- and 5- substituents ($\pi_{3'}$, $\pi_{5'}$ and $\pi_{5'}$), sum of Hammett σ_m value for the 3'-, 5'-phenyl or α -pyridyl substituents ($\Sigma \sigma_m$) and sum of Hammett $\sigma_P \sigma_P$ value for the 3'- and 5'- α pyridyl substituents ($\Sigma \sigma_P$). Ip ₁ is 1 when phenyl group is attached with N, Ip ₂ and Ip ₄ are 1 when hydrogen is not present at R ₄ and R _{5'} . When $C = O$ is present at R ₄ the indicator parameter is Ip ₃ having the value of unity.
Reference	QSAR Study on 5-Lipoxygenase Inhibitors Using Distance-Based Topological Indices. <i>Bioorganic & Medicinal Chemistry</i> 11 (2003) 5519–5527

Target Species	Human
Chemical Type	2,6-di- <i>tert</i> -Butylphenol derivatives
Mode of Action	Inhibitor
QSAR Model 1	pIC ₅₀ (LOX)=47.25(\pm 7.21)EHOMO+19.57(\pm 2.20) $n = 14 \ r^2 = 0.784 \ Q^2 = 0.695 \ s = 0.489 \ F = 42.88$
QSAR Model 2	$pIC_{50}(LOX) = -37.09(\pm 7.13)Q_{ox} - 17.47(\pm 4.35)$ $n = 14 \ r^2 = 0.693 \ Q^2 = 0.626 \ s = 0.589 \ F = 27.08$
QSAR Model 3	pIC ₅₀ (LOX) =38.82(±8.01)EHOMO + 0.16(±0.08)ClogP + 16.25(±2.70) $n = 14 r^2 = 0.833 Q^2 = 0.745 s = 0.440 F = 27.46$
QSAR Model 4	$pIC_{50}(LOX) = -0.13(\pm 0.02)Fe3^{+} + 2.79(\pm 0.34)$ $n = 14 \ r^{2} = 0.823 \ Q^{2} = 0.792 \ s = 0.440 \ F = 55.88$

Molecular Descriptor	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon
	Atomic charges and the energies of the highest-occupied (EHOMO) and lowest unoccupied molecular (ELUMO) orbital. Hydrophobicity, the ClogP parameter20
Reference	QSAR Study of Dual Cyclooxygenase and 5-Lipoxygenase Inhibitors 2,6-di-tert-Butylphenol Derivatives. <i>Bioorganic & Medicinal Chemistry</i> 11 (2003) 4207–4216