Therapeutic Targets Database

QSAR Model

Target Name	Calcium channel
Target TTD ID	TTDS00163

Target Species	Human
Target Location	Heart
Chemical Type	1,4-dihydropyridines
Mode of Action	Blocker
QSAR Model 1	$\begin{split} log(1/IC_{50}) &= 0.44(\pm 0.26)\pi + 1.47(\pm 0.93)\sigma_m - 0.032(\pm 0.011)V_w \\ &- 1.65(\pm 0.53)F_5{}^{(e)} - 6.5(\pm 1.9)\epsilon_{rot} + 0.217(\pm 0.071)B1p + 17.4(\pm 3.2) \\ n &= 45, r = 0.95, s = 0.49, F_{6,38} = 54.69 \end{split}$
QSAR Model 2	$\begin{split} log(1/IC_{50}) &= 0.179(\pm 0.075)\epsilon_{rot} - 0.256(\pm 0.094)Pol - 1.820(\pm 0.466)Ip + 0.556(\pm 0.382)I_{ew} \\ &+ 13.241(\pm 2.633) \end{split}$ n = 40, r = 0.921, r_{cv}^{2} = 0.78 , s = 0.25, F _{4,35} = 48.73(3.91)
Molecular Descriptor	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon π refers to hydrophobic parameter of X-substituent, σ_m is the electronic parameter (Hammett constant) of the Xsubstituent at meta position, V_w refers to van der Waals volume of the whole molecule, $F_5^{(e)}$ refers to the frontier electron density at the 5-position of the phenyl ring, ε_{rot} is the energy barrier of the rotate in of the phenyl ring, and B1p is the STERIMOL width parameter for the X-substituent at para-position. Pol refers to the polarizability of the molecule and Ip and Iew are the two indicator variables used with a value of 1 each for an X-substituent being at para-position and for that being electron-withdrawing in nature.
Reference	QSAR Studies on some Calcium Channel Blockers. Letters in Drug Design & Discovery, 2008, 5,

307-312

Target Species	Human
Target Location	Heart
Chemical Type	Benzazepinone analogs
Mode of Action	Blocker
QSAR Model 1	$\begin{split} log(1/IC_{50}) &= 2.719(\pm 0.842)\sigma_{R1} + 0.878(\pm 0.376)I_X + 0.376(\pm 0.357)I_{R2} \\ &+ 5.479(\pm 0.385) \end{split}$ n = 14, r = 0.920, $r_{cv}^2 = 0.70$, s = 0.24, F _{3,10} = 18.30(6.55)
QSAR Model 2	$\begin{split} \log(1/IC_{50}) &= 2.848(\pm 0.791)\sigma_{R1} + 0.788(\pm 0.472)I_X + 0.480(\pm 0.353)I_{R2} \\ &+ 5.410(\pm 0.365) \end{split}$ n = 13, r = 0.941, r _{cv} ² = 0.70, s = 0.21, F _{3,9} = 23.15(6.99)
QSAR Model 3	$\begin{split} \log(1/EC_{50}) &= -\ 0.889(\pm 0.845)^1\chi^v \ +\ 0.066(\pm 0.044)(^1\chi^v)^2 \ -\ 0.218\ st - 1.004(\pm 0.413)\ I_1 \\ &+\ 20.363(\pm 3.552) \end{split}$ n = 17, r = 0.953, $r_{cv}^2 = 0.82$, s = 0.25, F _{4,12} = 29.56(5.41), $^1\chi^v_{\ opt} = 6.73$
Molecular Descriptor	Access the following web-servers to compute molecular descriptors: <u>MoDel</u> and <u>e-dragon</u> π refers to hydrophobic parameter of X-substituent, σ_m is the electronic parameter (Hammett constant) of the Xsubstituent at meta position, V _w refers to van der Waals volume of the whole molecule, F ₅ ^(e) refers to the frontier electron density at the 5-position of the phenyl ring, ε_{rot} is the energy barrier of the rotate in of the phenyl ring, and B1p is the STERIMOL width parameter for the X-substituent at para-position. Pol refers to the polarizablity of the molecule and Ip and Iew are the two indicator variables used with a value of 1 each for an X-substituent being at para-position and for that being electron-withdrawing in nature.

	σ_{R1} stands for the Hammett constants of R ₁ - substituent and I _X and I _{R2} are the two indicator variables,
	used with a value of 1 each, for X = S in the 7-membered ring and R2 = OMe, respectively. ${}^{1}\chi^{V}$ is
	Kier's first-order valence molecular connectivity index of the molecule, stands for surface tension of
	the molecule, and I_1 is an indicator parameter, used with a value of 1, for compounds bearing 3,5-
	dmethyl group at the phenyl ring. 1 Nv is a measure of molecular size
Reference	QSAR Studies on some Calcium Channel Blockers. Letters in Drug Design & Discovery, 2008, 5,
	307-312

Target Species	Human
Target Location	Heart
Chemical Type	Quinolizidinyl derivatives
Mode of Action	Blocker
QSAR Model 1	$\begin{split} log(1/IC_{50}) &= 2.719(\pm 0.842)\sigma_{R1} + 0.878(\pm 0.376)I_X + 0.376(\pm 0.357)I_{R2} \\ &+ 5.479(\pm 0.385) \end{split}$ n = 14, r = 0.920, $r_{cv}^2 = 0.70$, s = 0.24, F _{3,10} = 18.30(6.55)
QSAR Model 2	$\begin{split} \log(1/IC_{50}) &= 2.848(\pm 0.791)\sigma_{R1} + 0.788(\pm 0.472)I_X + 0.480(\pm 0.353)I_{R2} \\ &+ 5.410(\pm 0.365) \end{split}$ n = 13, r = 0.941, r _{cv} ² = 0.70, s = 0.21, F _{3,9} = 23.15(6.99)
QSAR Model 3	$\begin{split} log(1/EC_{50}) &= - \ 0.889(\pm 0.845)^{1}\chi^{v} + \ 0.066(\pm 0.044)(^{1}\chi^{v})^{2} - \ 0.218 \ st - 1.004(\pm 0.413) \ I_{1} \\ &+ 20.363(\pm 3.552) \end{split}$ n = 17, r = 0.953, r _{cv} ² = 0.82 , s = 0.25, F _{4,12} = 29.56(5.41), ¹ \chi ^v _{opt} = 6.73
Molecular Descriptor	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon π refers to hydrophobic parameter of X-substituent, σ_m is the electronic parameter (Hammett

	constant) of the Xsubstituent at meta position, V _w refers to van der Waals volume of the whole
	molecule, $F_5^{(e)}$ refers to the frontier electron density at the 5-position of the phenyl ring, ε_{rot} is the
	energy barrier of the rotate in of the phenyl ring, and B1p is the STERIMOL width parameter for the
	X-substituent at para-position. Pol refers to the polarizablity of the molecule and Ip and Iew are the
	two indicator variables used with a value of 1 each for an X-substituent being at para-position and for
	that being electron-withdrawing in nature.
	σ_{R1} stands for the Hammett constants of R ₁ - substituent and I _X and I _{R2} are the two indicator variables,
	used with a value of 1 each, for X = S in the 7-membered ring and R2 = OMe, respectively. ${}^{1}\chi^{V}$ is
	Kier's first-order valence molecular connectivity index of the molecule, stands for surface tension of
	the molecule, and I_1 is an indicator parameter, used with a value of 1, for compounds bearing 3,5-
	dmethyl group at the phenyl ring. 1 Nv is a measure of molecular size
Reference	QSAR Studies on some Calcium Channel Blockers. Letters in Drug Design & Discovery, 2008, 5,
	307-312