Therapeutic Targets Database

QSAR Model

Target Name	AMPA Receptor
Target TTD ID	TTDS00121

Target Species	Human
Chemical Type	2,3-benzodiazepin-4(thi)one- and 1,2-phthalazine derivatives
Mode of Action	Modulator
QSAR Model 1	$\begin{split} 1/\text{ED}_{50} \; (\mu\text{mol/kg}) = &-5.811(3.4\text{e-9}) - 0.125(0.066) \text{HOMO} + 0.371(2.3\text{e-8}) \;\text{HB}_{don} \\ &-0.124(0.093) \;\text{ALOGP} + 0.661(0.001) \;\text{I_ssCH}_2 - 0.762(0.001) \;\text{I_dsN} \\ &+0.483(0.032) \;\text{I}_{Zagreb} \\ &n = &49, \; r^2 = 0.757, \; s = 0.348, \; F = &21.8 \end{split}$
QSAR Model 2	$\begin{split} &\ln 1/\text{ED}_{50} \; (\mu\text{mol/kg}) = -6.395(1.6\text{e-}8) - 0.129(0.115) \text{HOMO} + 0.398(2.4\text{e-}7) \;\text{HB}_{don} \\ & -0.098(0.282) \;\text{ALOGP} + 0.701(0.003) \;\text{I_ssCH}_2 - 0.386(0.091) \;\text{I_dsN} \\ & +0.506(0.080) \;\text{I}_{Zagreb} \\ & n = 61, \; r^2 = 0.597, \; s = 0.460, \; F = 13.3 \end{split}$
QSAR Model 3	$ln 1/ED_{50} (\mu mol/kg) = -4.358(5.74e-20) + 0.689(2.34e-6) I_NH_{\&atNH},$ -0.921(1.7e-6) I_no OMeO _{PHTZ} + 0.430(0.007) I_NH_{&noCO} -0.821(6.66e-5) I_pNO_2-0.615(0.005) I_mono7,8-O +0.692(0.004) log P _{o/w} -0.159(0.001) log P ² _{o/w} n=49, r ² =0.786, s=0.330, F=21.6

QSAR Model 4	$ln 1/ED_{50} (\mu mol/kg) = -4.428(4.62e-23) + 0.696(3.29e-7) I_NH_{\&arNH_2}$ -0.863(1.21e-6) I_noOMeO_PHTZ + 0.526(8.50e-5) I_NH_&noCO $\cong 0.980(6.61e-7) I_PNO_2 - 0.559(0.011) I_mono7, 8-O$ +0.787(0.0006) log $P_{o/w} - 0.183(5.34e-5) \log P_{o/w}^2$ n=61, r ² =0.779, σ =0.344, F=26.7
Molecular Descriptor	Access the following web-servers to compute molecular descriptors: <u>MoDel</u> and <u>e-dragon</u> HOMO is the highest occupied molecular orbital energy calculated by a semiempirical MOPAC/AM1 method, HBdon is the number of hydrogen bond donors, ALOGP is a calculated log octanol-water partition coefficient, I_ssCH2 and I_dsN are electrotopological state indices encoding for the presence/absence of -CH2- and –N= type carbon and nitrogen atoms, respectively, and IZagreb is the Zagreb topological index. I_NH&arNH2: an HB donor in the region corresponding to the vicinity of the 3-position of the benzodiazepine skeleton in combination with a (3'- or 4'-positioned) aromatic NH2 group, I_noOMeOPHTZ: phthalazine structures lacking the -OCH2O- methylenedioxy functionality, I_NH&noCO: an endocyclic NH lacking a carbonyl substituent, I_pNO2: a 4'-NO2 substituent, I_mono7,8-O: structures only mono-O-substituted in the 7- or 8-position
Reference	QSAR Study of 2,3-Benzodiazepin-4(thi)one- and 1,2-Phthalazine-Related Negative Allosteric Modulators of the AMPA Receptor: A Structural Descriptors-Based Reassessment. QSAR Comb. Sci. 2005, 24, pp 325-331