
## Therapeutic Targets Database





| Target<br>Name   | Matrix Metalloproteinase 9 (MMP-9) |
|------------------|------------------------------------|
| Target<br>TTD ID | TTDC00076                          |

| •                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Target Species          | Human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chemical<br>Type        | Anthranilic acid derivatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mode of Action          | Inhibitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| QSAR<br>Model 1         | $\log(1/\text{IC}_{50}) = 8.525(\pm 0.193) - 0.576(\pm 0.147)\log P$ $n = 10, r = 0.954, r_{\text{cv}}^2 = 0.86, s = 0.15, F_{1,8} = 81.56(11.26)$                                                                                                                                                                                                                                                                                                                                                                   |
| QSAR<br>Model 2         | $\log(1/\text{IC}_{50}) = 8.336(\pm 0.492) - 0.265(\pm 0.183) \log P - 1.241(\pm 0.725)I_1 + 1.183(\pm 0.691)I_4$ $n = 19, r = 0.882, r_{\text{cv}}^2 = 0.64, s = 0.50, \ F_{3,15} = 17.47(5.42)$                                                                                                                                                                                                                                                                                                                    |
| QSAR<br>Model 3         | $\log(1/\text{IC}_{50}) = 0.503(\pm 0.477)\text{Pol} - 1.806(\pm 0.567)I_{1,\text{CC}} - 0.807(\pm 0.559)I_{1,\text{N}} + 5.916(\pm 2.137)$ $n = 16, r = 0.920, r_{\text{cv}}^2 = 0.64, s = 0.37, \ F_{3,12} = 21.92(5.95)$                                                                                                                                                                                                                                                                                          |
| Molecular<br>Descriptor | Access the following web-servers to compute molecular descriptors: MoDel and e-dragon  I1 stands for R1-substituents and has a value of unity for R1 = OCH2Ph and zero for others,  I2 stands for R2-substituents and has a values of unity for R2 = CH2-3-pyridyl group and zero for others,  I3 stands for R3-substituents and is equal to 1 for R3 = an aromatic substituent and zero otherwise,  I4, which stands for R4-substituents also has a value of unity for R4 = an aromatic moiety and zero for others. |
| Reference               | A quantitative structure–activity relationship study on some series of anthranilic acid-based matrix metalloproteinase inhibitors. <i>Bioorganic &amp; Medicinal Chemistry</i> 13 (2005) 5454–5462                                                                                                                                                                                                                                                                                                                   |

| Target<br>Species       | Human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemical<br>Type        | N-hydroxy-2-[(phenylsulfonyl)amino]acetamide derivatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Mode of Action          | Inhibitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| QSAR<br>Model 1         | MLR-MMP-9: $\log(10^6/\text{IC}_{50}) = 109.844 \times \text{MATS2m} - 51.167 \times \text{MATS4m} + 8.380 \times \text{MATS2v} + 13.240 \times \text{MATS6e} + 7.864 \times \text{GATS6e} + 13.015 \times \text{GATS2p} - 72.742$ $N = 32;  R^2 = 0.767;  S = 0.478;  p < 10^{-5}$ $Q_{LOO}^2 = 0.644;  S_{CVLOO} = 0.544;  Q_{L3O}^2 = 0.605;  S_{CVL3O} = 0.597$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| QSAR<br>Model 2         | MLR-MMP-9: $log(10^6/IC_{50}) = 91.121 \times O[MATS2m] - 96.892 \times O[MATS4m] + 10.538 \times O[MATS2v] $ $+ 13.240 \times O[MATS6e] + 6.716 \times O[GATS6e] + 6.278 \times O[GATS2p] $ $- 0.631$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Molecular<br>Descriptor | Access the following web-servers to compute molecular descriptors: MoDel and e-dragon $N$ is the number of compounds included in the models; $R^2$ are the square of correlation coefficients; $S$ is the standard deviation of the regressions; $p$ is the significance of the variables in the models; $Q_{LOO}^2$ and $S_{CV\ LOO}$ are the correlation coefficients and standard deviations of the LOO cross-validation, respectively, and $Q_{L3O}^2$ and $S_{CV\ L3O}$ are the correlation coefficients and standard deviations of the L3O cross-validation, respectively; $^1\chi^v$ or $\log P$ : hydrophobicity-related descriptors; Descriptors of MMP1 include ATS2v, MATS5m, MATS7m, GATS1v, GATS1e, GATS4p; Descriptors of MMP2 include MATS5m, MATS5v, MATS5p, GATS4v, GATS7v, GATS7p; Descriptors of MMP3 include ATS2v, MATS1m, MATS6m, MATS6e, GATS1v, GATS5v; Descriptors of MMP9 include MATS6m, MATS2v, MATS1p, GATS3v, GATS7v, GATS8v; Descriptors of MMP13 include ATS2v, MATS4m, MATS7v, MATS1p, GATS3v, GATS7p; Contribution $C_i^{39}$ of descriptor i is given by: $C_i = \frac{100 \times \Delta m_i}{\Sigma \Delta m_i}$ . |
| Reference               | Linear and nonlinear QSAR study of N-hydroxy-2-[(phenylsulfonyl)amino]acetamide derivatives as matrix metalloproteinase inhibitors. <i>Bioorganic &amp; Medicinal Chemistry</i> 14 (2006) 4137–4150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Target<br>Species       | Human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemical<br>Type        | 5-amino-2-mercapto-1,3,4-thiadiazoles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mode of Action          | Inhibitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| QSAR<br>Model 1         | $\begin{split} &MMP\text{-}9\\ &\log(1/K_{\dot{1}}) = [2.59183(\pm 1.56751)] + I[0.789148(\pm 0.349099)] + \text{a.nF}[0.237027(\pm 0.101373)]\\ &N = 27, \ r = 0.885, \ r^2 = 0.784, \ \text{SEE} = 0.276, \ F = 27.834(F_{3,23} = 4.765),\\ &\text{chance} = < 0.001, \ q^2 = 0.676, \ S_{\mbox{PRESS}} = 0.338, \ S_{\mbox{DEP}} = 0.312 \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Molecular<br>Descriptor | Access the following web-servers to compute molecular descriptors: MoDel and e-dragon  Functional families of the descriptors-Descriptor: definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | <b>Physical properties</b> -apol: sum of the atomic polarizabilities; bpol: sum of the absolute value of the difference between; atomic polarizabilities of all bonded atoms in the molecule; mr: molecular refractivity; Weight: molecular weight; TPSA: topological polar surface area; log P(O/W): log of the octanol/water partition coefficient.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         | Atom counts and bond counts-a_aro: number of aromatic atoms; a_nN: number of nitrogen atoms; a_nO: number of oxygen atoms; a_nF: number of fluorine atoms; a_nS: number of sulfur atoms; a_nCl: number of chlorine atoms; a_nBr: number of bromine atoms; b_1rotN: number of rotatable single bonds; b_ar: number of aromatic bonds; b_ singlet: number of single bonds; b_double: number of double bonds; b_triple: number of triple bonds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                         | <b>Kier and Hall connectivity indices and Kier shape indices</b> - ${}^{0}\chi$ : atomic connectivity index (order 0); ${}^{0}\chi_{c}$ : carbon connectivity index (order 0); ${}^{1}\chi$ : atomic connectivity index (order 1); ${}^{1}\chi_{c}$ : carbon connectivity index (order 1); ${}^{0}\chi^{V}$ : atomic valence connectivity index (order 0); ${}^{0}\chi^{V}_{c}$ : carbon valence connectivity index (order 0); ${}^{1}\chi^{V}$ : atomic valence connectivity index (order 1); ${}^{1}\chi^{C}_{c}$ : carbon valence connectivity index (order 1); ${}^{1}K_{c}$ : first kappa shape index; ${}^{2}K_{c}$ : second kappa shape index; ${}^{3}K_{c}$ : third kappa shape index; ${}^{1}K_{\alpha}$ : first alpha modified shape index; ${}^{2}K_{\alpha}$ : second alpha modified shape index; ${}^{3}K_{\alpha}$ : third alpha modified shape index; KierFlex: Kier molecular flexibility index. |
|                         | Adjacency and distance matrix descriptors-balabanJ: Balaban's connectivity topological index; petitjeanSC: Petitjean graph shape coefficient; weinerPath: Wiener path number; weinerPol: Wiener                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

|           | polarity number; zagreb: Zagreb index.                                                                       |
|-----------|--------------------------------------------------------------------------------------------------------------|
|           | N is the number of data points, r is correlation coefficient, $r^2$ is squared correlation coefficient which |
|           | when multiplied by 100 gives explained variance in biological activity, SEE is standard error of             |
|           | estimate, F represents Fischer ratio between the variances of calculated and observed activities.            |
|           | QSAR analysis of some 5-amino-2-mercapto-1,3,4-thiadiazole based inhibitors of matrix                        |
| Reference | metalloproteinases and bacterial collagenase. Bioorganic & Medicinal Chemistry Letters 16 (2006)             |
|           | 3847–3854                                                                                                    |

| Target<br>Species       | Human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemical<br>Type        | Aryl sulfonyl amido derivatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mode of<br>Action       | Inhibitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| QSAR                    | $log(1/K_i) = 0.990(\pm 0.259)S_S - 3.132(\pm 0.380)S_N + 18.383(\pm 2.267)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Model 1                 | $n = 24$ , $r = 0.971$ , $r_{cv}^2 = 0.93$ , $R_A^2 = 0.94$ , $s = 0.15$ , $F_{2,21} = 170.65(5.78)$                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Molecular<br>Descriptor | Access the following web-servers to compute molecular descriptors: MoDel and e-dragon                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                         | $n$ is the number of compounds; $S_S$ and $S_N$ , the E-state indices of sulfur and nitrogen atoms; $R_A^2$ , the square of adjustable correlation coefficient [ $R_A^2 = r^2(1 - 1/F)$ ]; r, correlation coefficient; $r_{cv}^2$ , the squre of cross-validated correlation coefficient obtained from leave-one-out jackknife procedure; s is the standard deviation; F, F-ratio; $^1\chi^v$ is Kier's first-order valence molecular connectivity index and electrotopological state (E-state) indices of atoms (S); The intrinsic state of atom $I_i$ ; |
| Reference               | A Quantitative Structure-Activity Relationship Study on Some Aryl Sulfonyl Amido and Ureido Derivatives Acting as Matrix Metalloproteinase and <i>Clostridium histolyticum</i> Collagenase Inhibitors.  Letters in Drug Design & Discovery, 2007, 4, 496-501                                                                                                                                                                                                                                                                                              |

| Target  | Human |
|---------|-------|
| Species | Tuman |

| Chemical<br>Type        | Aryl sulfonyl ureido derivatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mode of Action          | Inhibitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| QSAR<br>Model 1         | $log(1/K_i) = 0.990(\pm 0.259)S_S - 3.132(\pm 0.380)S_N + 18.383(\pm 2.267)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Wiodel 1                | $n = 24$ , $r = 0.971$ , $r_{cv}^2 = 0.93$ , $R_A^2 = 0.94$ , $s = 0.15$ , $F_{2,21} = 170.65(5.78)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Molecular<br>Descriptor | Access the following web-servers to compute molecular descriptors: MoDel and e-dragon $n$ is the number of compounds; $S_S$ and $S_N$ , the E-state indices of sulfur and nitrogen atoms; $R_A^2$ , the square of adjustable correlation coefficient [ $R_A^2 = r^2(1 - 1/F)$ ]; $r$ , correlation coefficient; $r_{CV}^2$ , the square of cross-validated correlation coefficient obtained from leave-one-out jackknife procedure; $s$ is the standard deviation; $s$ , $s$ -ratio; |
| Reference               | A Quantitative Structure-Activity Relationship Study on Some Aryl Sulfonyl Amido and Ureido Derivatives Acting as Matrix Metalloproteinase and <i>Clostridium histolyticum</i> Collagenase Inhibitors.  Letters in Drug Design & Discovery, 2007, 4, 496-501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Target<br>Species       | Human                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemical<br>Type        | N-hydroxy- $\alpha$ -phenylsulfonylacetamide derivatives                                                                                                                                                                                                                                                                                                                                                                                |
| Mode of Action          | Inhibitor                                                                                                                                                                                                                                                                                                                                                                                                                               |
| QSAR<br>Model 1         | $\log(10^6/\text{IC}_{50}) = -0.005 \times \text{ATS6m} + 0.018 \times \text{ATS3e} + 8.881 \times \text{MATS2e} - 7.718 \times \text{MATS4e} \\ -4.655 \times \text{GATS1v} + 14.788 \times \text{GATS1e} + 2.379 \times \text{GATS6p} - 4.571$ $N_{\text{training}} = 66  R^2 = 0.731  S = 0.416  p < 10^{-5}  R_{\text{CV}}^2 = 0.605  S_{\text{CV}} = 0.504  N_{\text{test}} = 12$ $R_{\text{EP}}^2 = 0.713  S_{\text{EP}} = 0.415$ |
| Molecular<br>Descriptor | Access the following web-servers to compute molecular descriptors: MoDel and e-dragon MATS( $p_k$ , $l$ ) and GATS( $p_k$ , $l$ ), Moran's index and Geary's coefficient respectively at spatial lag $l$ ; $p_k$ ,                                                                                                                                                                                                                      |

value of property k;  $N_{\text{test}}$ , number of compounds included in the training and test sets respectively;  $R^2$ , square of correlation coefficients; S, standard deviation of regressions; p, significance of the variables in the models;  $R_{CV}^2$  and  $S_{CV}$ , correlation coefficients and standard deviations of the leave-one-out (LOO) cross-validation respectively;  $R_{EP}^2$  and  $S_{EP}$  the correlation coefficients and standard deviations of test set regressions respectively.

 $N_{training}$  and  $N_{test}$  are the number of compounds included in the training and test sets, respectively,  $R^2$  is the square of correlation coefficients, S is the standard deviation of the regressions, p is the significance of the variables in the models,  $R^2_{CV}$  and  $S_{CV}$  are the correlation coefficients and standard deviations of the leave-one-out (LOO) cross-validation, respectively.  $R2_{EP}$  and  $S_{EP}$  are the correlation coefficients and standard deviations of test set regressions, respectively.

Broto–Moreau's autocorrelation coefficients (ATS), Moran's indices (MATS), and Geary's coefficients (GATS). Descriptors (MMP1): ATS3e, MATS3m, MATS3e, MATS5e, MATS6e, GATS1v, GATS7p; Descriptors (MMP9): ATS6m, MATS2m, MATS5v, MATS1e, GATS4v, GATS5e, GATS4p; Descriptors (MMP13): ATS3m, ATS6m, MATS1v, GATS7v, GATS3e, GATS4e, GATS6p.

## Reference

QSAR modeling of matrix metalloproteinase inhibition by N-hydroxy- $\alpha$ -phenylsulfonylacetamide derivatives. *Bioorganic & Medicinal Chemistry* 15 (2007) 6298–6310