Therapeutic Targets Database

Target Name	Histamine H3 receptor
Target TTD ID	TTDC00079

Target Species	Human			
Chemical Type	Arylbenzofuran derivatives			
Mode of Action	Antagonist			
QSAR Model 1	$\begin{aligned} & pK_{i(\text{human})} = -7.30(\pm 2.67) - 1.88(\pm 0.30)E_{\text{HOMO}} - 0.48(\pm 0.07)\log D_{\text{pH7.4}} + \\ & + 1.26(\pm 0.29)\text{Mor}_{19\text{V}} - 1.93(\pm 0.44)\text{Mor}_{30\text{M}}, \\ & n = 58, \ r^2 = 0.754, \ F = 40.7, \ \text{S.E.} = 0.317, \ q_{\text{LOO}}^2 = 0.71 \end{aligned}$			
QSAR Model 2	$pK_{i(\text{human})} = -7.64(\pm 2.62) - 1.90(\pm 0.29)E_{\text{HOMO}} - 0.48(\pm 0.06) \log D_{\text{pH 7.4}} + 1.34(\pm 0.26)\text{Mor}_{19 \text{ V}} - 1.87(\pm 0.41)\text{Mor}_{30 \text{ M}}$ $n = 44, r^2 = 0.813, F = 42.3, \text{ S.E.} = 0.266$			
Molecular Description	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon The molecular descriptors in the equations are the energy of highest occupied molecular orbital (E _{HOMO}), apparent distribution coefficient at pH 7.4 (log D _{pH 7.4}) and 3D-MoRSE descriptors (Mor _{19V} and Mor _{30M}) for human data set and log D _{pH 7.4} , 3D-MoRSE descriptor (Mor _{18U}), MAXDP topological descriptor and fragment- based polar surface area (PSA) for the rat data set. Number of data (n), squared correlation coefficient (r²), F-value (F) and standard error (S.E.) are model statistics.			
Reference	Molecular modeling of histamine H3 receptor and QSAR studies on arylbenzofuran derived H3 antagonists. <i>Journal of Molecular Graphics and Modelling</i> 26 (2008) 834–844			

Target Species	Rat			
Chemical Type	Arylbenzofuran derivatives			
Mode of Action	Antagonist			
QSAR Model 1	$pK_{i(\text{rat})} = 9.32(\pm 0.31) + 0.99(\pm 0.19) \text{Mor}_{18\text{U}} - 0.47(\pm 0.07) \log D_{\text{pH7.4}} + 0.10(\pm 0.04) \text{MAXDP} + 0.02(\pm 0.003) \text{PSA},$ $n = 58, r^2 = 0.840, F = 69.8, \text{S.E.} = 0.288, q_{\text{LOO}}^2 = 0.81$			
QSAR Model 2	$bK_{i(\text{rat})} = 9.49(\pm 0.41) + 0.80(\pm 0.24) \text{Mor}_{18\text{U}} - 0.56(\pm 0.08) \log D_{\text{pH7.4}}$ $+ 0.10(\pm 0.04) \text{MAXDP} + 0.02(\pm 0.003) \text{PSA},$ $n = 44, r^2 = 0.837, F = 50.0, \text{S.E.} = 0.288$			
Molecular Description	Access the following web-servers to compute molecular descriptors: $\underline{\text{MoDel}}$ and $\underline{\text{e-dragon}}$ The molecular descriptors in the equations are the energy of highest occupied molecular orbital (E_{HOMO}) , apparent distribution coefficient at pH 7.4 (log $D_{pH7.4}$) and 3D-MoRSE descriptors (Mor _{19V} and Mor _{30M}) for human data set and log $D_{pH7.4}$, 3D-MoRSE descriptor (Mor _{18U}), MAXDP topological descriptor and fragment- based polar surface area (PSA) for the rat data set. Number of data (n), squared correlation coefficient (r^2), F-value (F) and standard error (S.E.) are model statistics.			
Reference	Molecular modeling of histamine H3 receptor and QSAR studies on arylbenzofuran derived H3 antagonists. <i>Journal of Molecular Graphics and Modelling</i> 26 (2008) 834–844			

Target Species	Human
Chemical Type	Clobenpropit analogs
Mode of Action	Dual activity ligand for H3 and H4 receptors

	$pK_1 hH_3R = 5.138 (\pm 0.758) + 12.506 (\pm 2.487) [GCUT_SMR_2] - 0.002 (\pm 0.009) [SlogP_VSA3]$				
QSAR Madald	$-\ 0.625\ (\pm0.573)\ [E_stb]\ -\ 0.073\ (\pm0.048)\ [dipoleZ]$				
Model 1	$N = 22$, $r = 0.871$, $R^2 = 0.758$, $S = 0.259$, $F_{4, 17} = 13.327$, $F_{5\%, 4, 17} = 2.965$.				
	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon				
	BCUT_PEOE_2: A descriptor calculated from the eigenvalues of a modified distance adjacency				
	matrix. The diagonal of the matrix takes the PEOEa partial charges (Steric, electrostatic);				
	BCUT_SLOGP_0: A descriptor calculated from the eigenvalues of a modified distance adjacency				
	matrix. The diagonal of the matrix takes the value of the atomic contribution to log P (Steric, hydrophobic);				
	dipoleZ: The z component of the dipole moment (Electrostatic);				
	E_sol: The solvation energy descriptor (Hydrophobic)				
Molecular	E_stb: The bond stretch-bend cross-term potential energy descriptor calculated from stored 3D				
Descriptor	conformations (Steric);				
	GCUT_PEOE_1: A descriptor calculated from the eigenvalues of a modified graph distance				
	adjacency matrix. The diagonal of the matrix takes the value of the atomic contribution to molar refractivity (Steric, electrostatic);				
	GCUT_SMR_2: A descriptor calculated from the eigenvalues of a modified graph distance adjacency				
	matrix. The diagonal of the matrix takes the value of the atomic contribution to molar refractivity (Steric);				
	SlogP_VSA3: The subdivided surface area descriptor based on the sum of the approximate accessible				
	van der Waal's surface area, calculated for each atom with contribution to log of partition coefficient (octanol/water) in the range of 0–0.1 (Hydrophobic)				
	Clobenpropit analogs as dual activity ligands for the histamine H3 and H4 receptors: Synthesis,				
Reference	pharmacological evaluation, and cross-target QSAR studies. <i>Bioorganic & Medicinal Chemistry</i> 17 (2009) 3987–3994				

Target	Human	
Species	Tuman	

Chemical Type	2-aminobenzimidazole derivatives				
Mode of Action	Antagonist				
QSAR Model 1	$pK_{a,1} = -1.43(\pm 0.11)\sigma_{m-p} + 6.08(\pm 0.04)$ $n = 11; r^2 = 0.950; s = 0.13; F = 158.4; q^2 = 0.887; SDEP = 0.17$				
QSAR Model 2	$pK_{a,1} = -1.46(\pm 0.16)\sigma_{m-p} + 6.51(\pm 0.06)$ $n = 11; r^2 = 0.910; s = 0.17; F = 87.2; q^2 = 0.798; SDEP = 0.23$				
QSAR Model 3	$\log P = 1.04(\pm 0.03)\pi + 0.82(\pm 0.08)\sigma_{\text{m-p}} + 1.55(\pm 0.03)$ $n = 11; r^2 = 0.995; s = 0.08; F = 812.4; q^2 = 0.990; SDEP = 0.10;$ $r(\pi/\sigma_{\text{m-p}}) = 0.039$				
QSAR model 4	$\log P = 1.06(\pm 0.05)\pi + 0.85(\pm 0.11)\sigma_{\text{m-p}} + 1.86(\pm 0.04)$ $n = 10; r^2 = 0.989; s = 0.11; F = 306.2; q^2 = 0.981; SDEP = 0.10;$ $r(\pi/\sigma_{\text{m-p}}) = 0.278$				
QSAR model 5	$pK_i = 1.51(\pm 0.37)\log P - 0.31(\pm 0.09)\log P^2 + 6.96(\pm 0.38)$ $n = 11; r^2 = 0.682; s = 0.38; F = 8.6; q^2 = 0.478; SDEP = 0.41$				
QSAR model 6	$pK_i = 1.40\log P - 0.28\log P^2 + 0.14pK_{a,1} + 0.07\sigma_m - 0.03\sigma_p - 0.04MR + 4.48$				
Molecular description	Access the following web-servers to compute molecular descriptors: $\underline{\text{MoDel}}$ and $\underline{\text{e-dragon}}$ Average of σ_m and σ_p (referred to as σ_{m-p} henceforth), accounting for benzimidazole tautomerism, which was then employed as a descriptor of substituent electronic effect. Physico-chemical parameters σ_{m-p} , π and MR. Partition and distribution coefficients (log P and log D _{7.4}). Traditional descriptors of substituent electronic (σ_m , σ_p , σ_{m_p} , F,R) and steric (MR, L, B1, B5, Sb) effects were used together with the experimental parameters; the square of the lipophilicity (log P²).				
Reference	Synthesis, biological activity, QSAR and QSPR study of 2-aminobenzimidazole derivatives as potent H3-antagonists. <i>Bioorganic & Medicinal Chemistry</i> 12 (2004) 663–674				