Therapeutic Targets Database

QSAR Model

Target Name	Muscarinic acetylcholine receptor M3
Target TTD ID	TTDS00004

Target Species	Human
Chemical Type	Quaternary soft anticholinergic structures
Mode of Action	Antagonist
QSAR Model 1	$pA_{2} = 15.115_{(\pm 0.878)} - 0.0260_{(\pm 0.0029)}V - 2.413_{(\pm 0.249)}I_acid + 0.980_{(\pm 0.297)}I_2R - 0.760_{(\pm 0.182)}I_PS + 0.529_{(\pm 0.169)}I_cPe n = 43, r^{2} = 0.833, q^{2}_{LO4GO} = 0.755, \sigma = 0.449, F = 37.0$
QSAR Model 2	$pK_{i}(M_{3}) = 13.946_{(\pm 1.260)} - 0.0201_{(\pm 0.0041)}V - 1.889_{(\pm 0.443)}I_acid$ $+ 1.340_{(\pm 0.363)}I_2R + 1.364_{(\pm 0.317)}I_PcHC$ $n = 28, r^{2} = 0.687, q^{2}_{LO4GO} = 0.493, \sigma = 0.553, F = 12.6$
QSAR Model 3	$\begin{split} pA_2 &= -0.434 \ln[e^{-a(V-V_0)/0.434} + e^{b(V-V_0)/0.434}] + c + \\ d_{acid} \cdot I_acid + d_{2R} \cdot I_2R + d_{PS} \cdot I_PS + d_{cPe} \cdot I_cPe \\ a &= 0.050_{(\pm 0.007)}, b = 0.025_{(\pm 0.004)}, c = 8.443_{(\pm 0.145)}, \\ V_0 &= 264.1_{(\pm 5.2)} \\ d_{acid} &= -1.942_{(\pm 0.317)}, d_{2R} = 0.848_{(\pm 0.420)}, \\ d_{PS} &= -1.048_{(\pm 0.244)}, d_{cPe} = 0.254_{(\pm 0.225)} \\ n &= 76, r^2 = 0.698, q^2_{LO4GO} = 0.620, \sigma = 0.631 \end{split}$

QSAR Model 4	$\log K = -0.434 \ln[e^{-a(V-V_0)/0.434} + e^{b(V-V_0)/0.434}] + c + c$
	$d_{2\text{OH}} \cdot I_2\text{OH} + d_{2\text{cHx}} \cdot I_2\text{cHx} + d_{\text{COO}} \cdot I_\text{COO} +$
	d _{diRng} •I_diRng
	$a = 0.020_{(\pm 0.001)}, b = 0.012_{(\pm 0.003)}, c = 6.177_{(\pm 0.113)},$
	$V_0 = 255.0_{(\pm 8.8)}$
	$d_{2\text{OH}} = 1.197_{(\pm 0.083)}, d_{2\text{cHx}} = 1.014_{(\pm 0.084)},$
	$d_{\rm COO} = 0.785_{(\pm 0.077)}, d_{\rm diRng} = 0.827_{(\pm 0.140)}$
	$n = 128$, $r^2 = 0.975$, $q^2_{\text{LO4GO}} = 0.967$, $\sigma = 0.256$
QSAR Model 5	$\log K = 0.784_{(\pm 0.06)} \pi_{\rm R} - 0.353_{(\pm 0.26)} (\pi_{-{\rm N}^{\oplus} \equiv})^2 - $
	$0.171_{(\pm 0.24)}(\pi_{-N^{\oplus}}) + 0.736_{(\pm 0.11)}u_{R} +$
	$2.309_{(\pm 0.27)}n_{\rm OH} + 2.173_{(\pm 0.29)}$
	$n = 128, r^2 = 0.924, \sigma = 0.441, F = 7.0$
Molecular Descriptor	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon
	Structural features that influence activity, and corresponding indicator variables, I_str ; were introduced into the model to account for their presence ($I_str = 1$ if <i>str</i> is present, 0 otherwise)
	I_acid for the presence of a carboxylic acid (-COOH), I_2R for enantiomerically pure 2 <i>R</i> isomers, I_PS
	for succinic analogues where the carboxylic ester is one postion away from the substitution center $(R_3 -$
	$CH_2COOR \text{ vs } R_3 = -COOR \text{ in the malonic series}$, and I_cPe for the presence of a cyclopentyl substitution
	at the 2-position (as in glycopyrrolate). pA_2 activity values for the guines pig ileum assay effective van
	der Waals molecular volume (V). The I indicator variables denote the presence (1) or absence (0) of the
	following structural moleties: I_2OH a 2-hydroxy substituent, I_ 2cHx a 2-cyclohexyl substituent, I_COO
	following structural moleties: I_2OH a 2-hydroxy substituent, I_ 2cHx a 2-cyclohexyl substituent, I_COO an ester moety, I_diRng two ring substituents
Reference	following structural moleties: I_2OH a 2-hydroxy substituent, I_ 2cHx a 2-cyclohexyl substituent, I_COO an ester moety, I_diRng two ring substituents Soft Quaternary Anticholinergics: Comprehensive Quantitative Structure-Activity Relationship (QSAR)