Therapeutic Targets Database

Target Name	MMP-2
Target TTD ID	TTDC00104

Target Species	Human
Chemical Type	N-hydroxy-2-[(phenylsulfonyl)amino]acetamide derivatives
Mode of Action	Inhibitor
	MLR-MMP-2:
	$log(10^6/IC_{50}) = -0.042 \times ATS2v - 110.925 \times MATS4m - 55.421 \times MATS8m$
QSAR Madala	$-8.431 \times MATS3v + 2.379 \times GATS6e + 5.227 \times GATS2p + 162.799$
Model 1	$N = 32;$ $R^2 = 0.808;$ $S = 0.420;$ $p < 10^{-5}$
	$Q_{\text{LOO}}^2 = 0.721$ $S_{\text{CV LOO}} = 0.454$ $Q_{\text{L3O}}^2 = 0.697$ $S_{\text{CV L3O}} = 0.479$
	MLR-MMP-2:
QSAR	$\log(10^{6}/IC_{50}) = -0.049 \times O[ATS2v] - 110.925 \times O[MATS4m] - 32.131 \times O[MATS8m]$
Model 2	$-2.739 \times O[MATS3v] + 4.427 \times O[GATS6e] + 4.716 \times O[GATS2p]$
	+ 37.443
	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon
	N is the number of compounds included in the models; R^2 are the square of correlation coefficients; S
	is the standard deviation of the regressions; p is the significance of the variables in the models; Q_{LOO}^2
Molecular	and $S_{CV\ LOO}$ are the correlation coefficients and standard deviations of the LOO cross-validation,
Descriptor	respectively, and Q_{L30}^2 and $S_{CV L30}$ are the correlation coefficients and standard deviations of the L3O
	cross-validation, respectively; ${}^{1}\chi^{v}$ or log P : hydrophobicity-related descriptors; Descriptors of MMP1
	include ATS2v, MATS5m, MATS7m, GATS1v, GATS1e, GATS4p; Descriptors of MMP2 include
	MATS5m, MATS5v, MATS5p, GATS4v, GATS7v, GATS7p; Descriptors of MMP3 include ATS2v,
	MATS1m, MATS6m, MATS6e, GATS1v, GATS5v; Descriptors of MMP9 include MATS6m,

	MATS2v, MATS1p, GATS3v, GATS7v, GATS8v; Descriptors of MMP13 include ATS2v,
	MATS4m, MATS7v, MATS1p, MATS5p, GATS7p; Contribution C_i^{39} of descriptor i is given by:
	$C_i = \frac{100 \times \Delta m_i}{\sum \Delta m_i}.$
Reference	Linear and nonlinear QSAR study of N-hydroxy-2-[(phenylsulfonyl)amino]acetamide derivatives as matrix metalloproteinase inhibitors. <i>Bioorganic & Medicinal Chemistry</i> 14 (2006) 4137–4150
	matrix metanoproteniase minotions. <i>Bioorganic & Medicinal Chemistry</i> 14 (2000) 4157–4130

Target Species	Human
Chemical Type	5-amino-2-mercapto-1,3,4-thiadiazoles
Mode of Action	Inhibitor
QSAR Model 1	$\begin{split} \textit{MMP-2} \\ \log(1/K_{\rm i}) &= [2.92822(\pm 0.860004)] \\ &+ {}^{3}K_{\rm a}[0.255415(\pm 0.122169)] + \text{a_nF}[0.110207(\pm 0.0556175)] \\ &+ I[0.357692(\pm 0.191531)] \\ N &= 27, \ r = 0.893, \ r^{2} = 0.797, \ \text{SEE} = 0.152, \ F = 30.175(F_{3,23} = 4.765), \\ \text{chance} &= < 0.001, \ q^{2} = 0.682, \ \textit{S}_{\mbox{PRESS}} = 0.189, \ \textit{S}_{\mbox{DEP}} = 0.175. \end{split}$
Molecular Descriptor	Functional families of the descriptors-Descriptor: definition Physical properties-apol: sum of the atomic polarizabilities; bpol: sum of the absolute value of the difference between; atomic polarizabilities of all bonded atoms in the molecule; mr: molecular refractivity; Weight: molecular weight; TPSA: topological polar surface area; log P(O/W): log of the octanol/water partition coefficient. Atom counts and bond counts-a_aro: number of aromatic atoms; a_nN: number of nitrogen atoms; a_nO: number of oxygen atoms; a_nF: number of fluorine atoms; a_nS: number of sulfur atoms; a_nCl: number of chlorine atoms; a_nBr: number of bromine atoms; b_1rotN: number of rotatable single bonds; b_ar: number of aromatic bonds; b_ singlet: number of single bonds; b_double: number of double bonds; b_triple: number of triple bonds. Kier and Hall connectivity indices and Kier shape indices- ⁰ χ: atomic connectivity index (order 0);

	$^{0}\chi_{c}$: carbon connectivity index (order 0); $^{1}\chi$: atomic connectivity index (order 1); $^{1}\chi_{c}$: carbon
	connectivity index (order 1); ${}^{0}\chi^{V}$: atomic valence connectivity index (order 0); ${}^{0}\chi^{V}_{c}$: carbon valence
	connectivity index (order 0); ${}^{1}\chi^{V}$: atomic valence connectivity index (order 1); ${}^{1}\chi^{V}_{c}$: carbon valence
	connectivity index (order 1); ¹ K: first kappa shape index; ² K: second kappa shape index; ³ K: third
	kappa shape index; ${}^{1}K_{\alpha}$: first alpha modified shape index; ${}^{2}K_{\alpha}$: second alpha modified shape index;
	$^{3}K_{\alpha}$: third alpha modified shape index; KierFlex: Kier molecular flexibility index.
	Adjacency and distance matrix descriptors-balabanJ: Balaban's connectivity topological index;
	petitjeanSC: Petitjean graph shape coefficient; weinerPath: Wiener path number; weinerPol: Wiener
	polarity number; zagreb: Zagreb index.
	N is the number of data points, r is correlation coefficient, r^2 is squared correlation coefficient which
	when multiplied by 100 gives explained variance in biological activity, SEE is standard error of
	estimate, F represents Fischer ratio between the variances of calculated and observed activities.
	QSAR analysis of some 5-amino-2-mercapto-1,3,4-thiadiazole based inhibitors of matrix
Reference	metalloproteinases and bacterial collagenase. Bioorganic & Medicinal Chemistry Letters 16 (2006)
	3847–3854

Target Species	Human
Chemical Type	Aryl sulfonyl amido derivatives
Mode of Action	Inhibitor
QSAR Model 1	$log(1/K_i) = 0.853(\pm 0.309)S_S - 2.331(\pm 0.598)S_N - 0.683(\pm 0.325)I$ $+ 15.530(\pm 3.227).$ $n = 24, r = 0.952, r_{cv}^2 = 0.87, R_A^2 = 0.89, s = 0.09, F_{3,20} = 64.35(4.94)$
Molecular Descriptor	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon n is the number of compounds; S_S and S_N , the E-state indices of sulfur and nitrogen atoms; R_A^2 , the square of adjustable correlation coefficient [$R_A^2 = r^2(1 - 1/F)$]; r , correlation coefficient; r_{cv}^2 , the square of cross-validated correlation coefficient obtained from leave-one-out jackknife procedure; s is

	the standard deviation; F, F-ratio; ${}^{1}\chi^{\nu}$ is Kier's first-order valence molecular connectivity index and
	electrotopological state (E-state) indices of atoms (S); The intrinsic state of atom I _i ;
	A Quantitative Structure-Activity Relationship Study on Some Aryl Sulfonyl Amido and Ureido
Reference	Derivatives Acting as Matrix Metalloproteinase and Clostridium histolyticum Collagenase Inhibitors.
	Letters in Drug Design & Discovery, 2007, 4, 496-501

Target Species	Human
Chemical Type	Aryl sulfonyl ureido derivatives
Mode of Action	Inhibitor
QSAR Model 1	$\begin{split} log(1/K_i) &= 0.853(\pm 0.309)S_S - 2.331(\pm 0.598)S_N - 0.683(\pm 0.325)I \\ &+ 15.530(\pm 3.227). \\ \\ n &= 24, \ r = 0.952, \ r_{cv}^{\ 2} = 0.87, \ R_A^{\ 2} = 0.89, \ s = 0.09, \ F_{3,20} = 64.35(4.94) \end{split}$
Molecular Descriptor	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon n is the number of compounds; S_S and S_N , the E-state indices of sulfur and nitrogen atoms; R_A^2 , the square of adjustable correlation coefficient $[R_A^2 = r^2(1 - 1/F)]$; r , correlation coefficient; r_{CV}^2 , the squre of cross-validated correlation coefficient obtained from leave-one-out jackknife procedure; s is the standard deviation; s ,
Reference	A Quantitative Structure-Activity Relationship Study on Some Aryl Sulfonyl Amido and Ureido Derivatives Acting as Matrix Metalloproteinase and <i>Clostridium histolyticum</i> Collagenase Inhibitors. Letters in Drug Design & Discovery, 2007, 4, 496-501