Therapeutic Targets Database

Target Name	Adenosine A _{2A} receptor
Target TTD ID	TTDS00187

Target Species	Human
Chemical Type	Adenosine analogues
Mode of Action	Agonist
QSAR Model 1	$\log(A_2K_i) = -0.50(\pm 0.31) \cdot \log k' + 0.19(\pm 0.06) \cdot (\log k')2 + 3.05(\pm 0.34)$ $N = 8 \text{ S} = 0.25 \text{ R}^2 = 0.92 \text{ F} = 28.87 \text{ p} < 0.0018$
Molecular Descriptor	Access the following web-servers to compute molecular descriptors: $\underline{\text{MoDel}}$ and $\underline{\text{e-dragon}}$ Log K': lipophilicity; N is the number of compounds included in the analysis, S is the root mean square error, R2 is the square of the correlation coefficient, F relates the variance of the null hypothesis to the correlation variance, p is the probability that a random set of data would yield a higher F value, and terms are given \pm their standard errors.
Reference	Quantitative Structure Activity Relationships as Useful Tools for the Design of New Adenosine Receptor Ligands. 1. Agonist. <i>Current Medicinal Chemistry</i> , 2006, 13, 2253-2266

Target Species	Human
Chemical Type	Adenosine analogues
Mode of Action	Agonist

QSAR Model 1	$\log(K_i) = 1.038-54.677 \cdot (R6u+) + 1.793 \cdot \text{HGM} - 23.814(R5e+)$
	$+15.137 \cdot (HATS3u) - 14.396 \cdot (R1v+)$
	$N = 29 S = 0.375 R^2 = 0.778 F = 16.149 p < 10^{-5} q^2_{LOO} = 0.681 S_{CV-LOO} = 0.464$
QSAR Model 2	$\log(K_i) = 0.001 - 0.371^{1}\Omega R6u + 0.604^{2}\Omega HGM -$
	$0.307 \cdot {}^{3}\Omega R5e^{+} + 0.392 \cdot {}^{4}\Omega HATS3u - 0.280 \cdot 5\Omega R1v^{+}$
	$N = 28 S = 0.331 R^2 = 0.831 F = 21.658 p < 10^{-5} q^2_{LOO} = 0.793 S_{CV-LOO} = 0.362$
QSAR	$-\log(K_i) = 0.22 + 0.07^{1}\Omega RDF075p - 0.11^{2}\Omega RDF135m -$
	$0.10^{.3}\Omega RDF130v + 0.18^{.4}\Omega RDF100m - 0.15^{.5}\Omega RDF140m$
Model 3	$N = 28 \text{ S} = 0.299 \text{ R}^2 = 0.849 \text{ F} = 24.812 \text{ p} < 10^{-5} \text{ q}^2 \text{ (LOO)} = 0.786 \text{ S}_{LOO} = 0.368$
	$q^2 (LGO) = 0.749 S_{LGO} = 0.407$
	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon
	Topological: MSD, CIC1, VRA1, MPC09, piPC09, T(NS)
	Galvez Topological Charges indexes: GGI2, GGI3, GGI8, GGI9, GGI10, JGI5
Molecular	Randic Molecular Profiles: DP01, SP03, SP04, SP07, SP12, SP13
Descriptor	Geometrical: W3D, AGDD, DDI, ADDD, MAXDP, FDI
	WHIM: E3u, P2m, G3m, L2s, E2s, Gu
	GETAWAY: H8v, REIG, R2u+, R7u+, R5v, R1v+
	The REIG descriptor is defined as the first eigenvalue of the influence/distance matrix of the
	magnitude in question.
Reference	Quantitative Structure Activity Relationships as Useful Tools for the Design of New Adenosine
	Receptor Ligands. 1. Agonist. Current Medicinal Chemistry, 2006, 13, 2253-2266

Target Species	Rat
Target Location	Brain

Chemical Type	8-substituted xanthines
Mode of Action	Antagonist
QSAR Model 1	$pK_i(A_2) = 0.66 (\pm 0.14)\pi_8 + 0.48 (\pm 0.16)\pi_1 - 0.57 (\pm 0.25)7CH_3 + 4.34 (\pm 0.28)$ $n = 38; r = 0.71; s^2 = 0.52; F = 11.78.$
QSAR Model 2	$pK_{i}(A_{2}) = 0.57 (\pm 0.13) \pi_{8} - 0.46 (\pm 0.17)\pi_{1} - 3.42 (\pm 1.75)\sigma_{m8} + 4.37 (\pm 0.27)$ $n = 25; r = 0.81; s^{2} = 0.40; F = 13.27.$
QSAR Model 3	$pK_{i}(A_{2}) = 0.49 (\pm 0.11)\pi_{8} + 0.40 (\pm 0.14)\pi_{1} - 4.88 (\pm 1.44)\sigma_{m8} + 4.42 (\pm 0.22)$ $n = 24; r = 0.87; s^{2} = 0.25; F = 20.50.$
QSAR Model 4	$pK_{i}(A_{2}) = 0.64 (\pm 0.12)\pi_{8} - 0.59 (\pm 0.22)7CH_{3} + 0.48 (\pm 0.14)\pi_{1} + 57.87 (\pm 19.60)S_{8}^{N} - 8.07 (\pm 4.21)$ $n = 38; r = 0.78; s^{2} = 0.43; F = 13.02.$
QSAR Model 5	$pK_1(A_2) = 0.66 (\pm 0.11)\pi_8 - 0.47 (\pm 0.21)7CH_3 + 0.41 (\pm 0.13)\pi_1$ $+ 61.57 (\pm 17.88)S_8^N + 45.39 (\pm 16.15)q_3 + 5.90 (\pm 3.19)$ $n = 38; r = 0.83; s^2 = 0.35; F = 14.17.$
Molecular Descriptor	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon A_1 adenosine receptor binding affinity was measured by inhibition of [3H]-N6- phenylisopropyladenosine in rat brain membranes and by inhibition of N6-R-PIA-elicited inhibition of adenylate cyclase in rat fat cell membranes. In our MO calculations, we routinely examined: the net atomic charges; the energies of the highest occupied and lowest unoccupied molecular orbitals, the HOMO and LUMO, respectively; the dipole moments; and the donor and acceptor superdelocalizabilities. 1) set of π -constants for the substituents: π_1 , π_3 , π_7 , π_8 , which describe the hydrophobicity of the substituents at the 1-, 3-, 7- and 8-positions, respectively; 2) the set of σ -constants for the substituent R^8 : σ_m , σ_p , σ^* , which describe the mesomeric and inductive effect of the R^8 ; 3) the molecular refractivity of the substituent R^8 , MR^8 , which describes the volume of R^8 ;

	4) the set of quantum chemical indices discussed above; and
	5) the indicator variables 13DPR and 7CH, which account for the presence or absence of a certain group in a certain position. The indicator variable 13DPR has value 1 when propyl groups are attached to both N¹ and N³ and value 0 when they are absent. The indicator variable 7CH₃ has value 1 when a methyl group is present at the 7-position and value 0 when a hydrogen is present. These indicator variables quantify the effect of a substituent on the biological activity that cannot be attributed to the physicochemical properties considered.
	attributed to the physicochemical properties considered.
Reference	QSAR studies of S-substituted xanthenes as adenosine receptor antagonists. <i>Euv JMed Chem</i> (1994) 29,133-138