Therapeutic Targets Database

Target Name	Nicotinic acetylcholine receptor
Target TTD ID	TTDS00303

Target Species	Human
Chemical Type	Caracurine V analogues
Mode of Action	Ligand
QSAR Model 1	$\begin{split} p\hat{K}_{i} &= 3.0387 + 0.1025 \cdot DsDs_{3} - 0.0032 \cdot AA_{9} - 0.0164 \cdot DsH_{3} + 0.0202 \cdot DsDs_{4} \\ R_{CV-1}^{2} &= 0.73, RMSEP_{CV-1} = 0.39, \ R_{CV-40\%}^{2} = 0.69, RMSEP_{CV-40\%} = 0.42, R^{2} = 0.77, \\ RMSEC &= 0.38, m = 33, LV = 3 \end{split}$
Molecular Descriptor	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon R_{CV-1}^2 (also known as q^2) and $R_{CV-40\%}^2$ are the leave-one-out and leave-40%-out cross-validated squared multiple correlation coefficients, and $RMSEP_{CV-1}$ and $RMSEP_{CV-40\%}$ are the respective root-mean squared errors of prediction. R^2 is the coefficient of determination, RMSEC is the root mean squared error of calibration (also known as s), m is the number of molecules and LV is the number of principal components. 'Ds', 'A' and 'H', describe surface points with strong H-bond donor, H-bond acceptor and hydrophilic properties, respectively. DsDs_3 and DsDs_4 describe the presence or absence of the allyl alcohol group and DsH_3 discriminates between compounds with one and two allyl alcohol moieties.
Reference	Bisquaternary caracurine V and iso-caracurine V salts as ligands for the muscle type of nicotinic acetylcholine receptors: SAR and QSAR studies. <i>Bioorganic & Medicinal Chemistry</i> 12 (2004) 6277–6285

Target Species	Human
Chemical Type	Iso-caracurine V analogues
Mode of Action	Ligand
QSAR Model 1	$\begin{split} p\hat{K}_i &= 3.0387 + 0.1025 \cdot DsDs_3 - 0.0032 \cdot AA_9 - 0.0164 \cdot DsH_3 + 0.0202 \cdot DsDs_4 \\ R_{CV-1}^2 &= 0.73, RMSEP_{CV-1} = 0.39, \ R_{CV-40\%}^2 = 0.69, RMSEP_{CV-40\%} = 0.42, R^2 = 0.77, \\ RMSEC &= 0.38, m = 33, LV = 3 \end{split}$
Molecular Descriptor	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon R_{CV-1}^2 (also known as q^2) and $R_{CV-40\%}^2$ are the leave-one-out and leave-40%-out cross-validated squared multiple correlation coefficients, and $RMSEP_{CV-1}$ and $RMSEP_{CV-40\%}$ are the respective root-mean squared errors of prediction. R^2 is the coefficient of determination, RMSEC is the root mean squared error of calibration (also known as s), m is the number of molecules and LV is the number of principal components. 'Ds', 'A' and 'H', describe surface points with strong H-bond donor, H-bond acceptor and hydrophilic properties, respectively. DsDs_3 and DsDs_4 describe the presence or absence of the allyl alcohol group and DsH_3 discriminates between compounds with one and two allyl alcohol moieties.
Reference	Bisquaternary caracurine V and iso-caracurine V salts as ligands for the muscle type of nicotinic acetylcholine receptors: SAR and QSAR studies. <i>Bioorganic & Medicinal Chemistry</i> 12 (2004) 6277–6285