Target Validation Information | |||||
---|---|---|---|---|---|
TTD ID | T28330 | ||||
Target Name | Cholecystokinin receptor type A (CCKAR) | ||||
Type of Target |
Clinical trial |
||||
Drug Potency against Target | Drug Info | IC50 = 120 nM | [17] | ||
A-71378 | Drug Info | IC50 = 0.5 nM | [17] | ||
PD-170292 | Drug Info | EC50 = 2 nM | [16] | ||
Drug Info | Ki = 5700 nM | [4] | |||
Drug Info | Ki = 7000 nM | [5] | |||
Drug Info | Ki = 400 nM | [1] | |||
Drug Info | IC50 = 280 nM | ||||
Drug Info | Ki = 0.64 nM | [11] | |||
Drug Info | IC50 = 4300 nM | ||||
Drug Info | Ki = 3200 nM | [4] | |||
1-(3,3-Diphenyl-allyl)-3-m-tolyl-urea | Drug Info | Ki = 800 nM | [1] | ||
1-(4-Chloro-phenyl)-3-(3,3-diphenyl-allyl)-urea | Drug Info | Ki = 90 nM | [1] | ||
1-(4-Chloro-phenyl)-3-(3-pentyl-oct-2-enyl)-urea | Drug Info | Ki = 200 nM | [1] | ||
Asp-Tyr(OSO3H)-Met-Gly-Trp-Met-Asp-Phe | Drug Info | IC50 = 0.28 nM | |||
Boc-Asp-Tyr(So3-)-Nle-Gly-Trp-Asp-Phe-NH2 | Drug Info | IC50 = 5 nM | [9] | ||
Boc-cyclo-(Glu-Tyr-Nle-D-Lys)-Trp-Nle-Asp-Phe-NH2 | Drug Info | Ki = 1997 nM | [11] | ||
Boc-D-Glu-Tyr(SO3H)-Nle-D-Lys-Trp-Nle-Asp-Phe-NH2 | Drug Info | Ki = 1550 nM | [11] | ||
Boc-D-Glu-Tyr(SO3H)-Nle-D-Nle-Trp-Nle-Asp-Phe-NH2 | Drug Info | Ki = 1600 nM | [11] | ||
Boc-Glu-Tyr(SO3H)-Nle-D-Lys-Trp-Nle-Asp-Phe-NH2 | Drug Info | Ki = 1996 nM | [11] | ||
Boc-Tyr(SO3H)-Nle-Gly-Trp-Nle-Asp-Phe-NH2 | Drug Info | Ki = 0.93 nM | [11] | ||
CR-1795 | Drug Info | IC50 = 30 nM | |||
CR-2345 | Drug Info | IC50 = 6600 nM | |||
Dexloxiglumide | Drug Info | Ki = 0.64 nM | [10] | ||
FR-175985 | Drug Info | IC50 = 62 nM | |||
H-Tyr-D-Ala-Gly-Phe-NH-NH-Phe-Asp-Nle-D-Trp-H | Drug Info | Ki = 10000 nM | [2] | ||
H-Tyr-D-Ala-Gly-Phe-NH-NH-Phe-Asp-Nle-Trp-Boc | Drug Info | Ki = 4100 nM | [2] | ||
H-Tyr-D-Ala-Gly-Phe-NH-NH-Trp-D-Nle-D-Asp-D-Phe-H | Drug Info | Ki = 1900 nM | [5] | ||
IQM-95333 | Drug Info | Ki = 2890 nM | [14] | ||
L-708474 | Drug Info | IC50 = 1797 nM | [13] | ||
L-740093 | Drug Info | IC50 = 1604 nM | |||
PD-135118 | Drug Info | IC50 = 950 nM | |||
PD-135666 | Drug Info | IC50 = 25.5 nM | |||
PD-136621 | Drug Info | IC50 = 3100 nM | |||
PD-137337 | Drug Info | IC50 = 2500 nM | |||
PD-137342 | Drug Info | IC50 = 18000 nM | |||
PD-138915 | Drug Info | IC50 = 580 nM | |||
PD-138916 | Drug Info | IC50 = 850 nM | |||
PD-140547 | Drug Info | IC50 = 539 nM | |||
PD-140548 | Drug Info | IC50 = 2.8 nM | |||
PD-140723 | Drug Info | IC50 = 186 nM | |||
Pranazepide | Drug Info | IC50 = 0.67 nM | |||
Tetragastrin | Drug Info | Ki = 3 nM | [12] | ||
Tyr-D-Ala-Gly-D-Trp-Nle-Asp-Phe-NH2 | Drug Info | Ki = 6500 nM | [4] | ||
Tyr-D-Ala-Gly-D-Trp-NMeNle-Asp-Phe-NH2 | Drug Info | Ki = 320 nM | [4] | ||
Tyr-D-Ala-Gly-Phe-NH-NH-Phe-Asp-NMeNle-D-Trp-Boc | Drug Info | Ki = 1900 nM | [2] | ||
Tyr-D-Ala-Gly-Trp-NMeNle-Asp-Phe-NH2 | Drug Info | Ki = 5100 nM | [4] | ||
Tyr-D-Nle-Gly-D-Trp-NMeNle-Asp-Phe-NH2 | Drug Info | Ki = 910 nM | [4] | ||
Tyr-D-Nle-Gly-Trp-Nle-Asp-Phe-NH2 | Drug Info | Ki = 9.6 nM | [4] | ||
Tyr-D-Phe-Gly-D-Trp-Nle-Asp-Phe-NH2 | Drug Info | Ki = 2000 nM | [4] | ||
Tyr-D-Phe-Gly-D-Trp-NMeNle-Asp-Phe-NH2 | Drug Info | Ki = 1100 nM | [4] | ||
Tyr-D-Phe-Gly-Trp-Nle-Asp-Phe-NH2 | Drug Info | Ki = 98 nM | [4] | ||
Tyr-D-Phe-Gly-Trp-NMeNle-Asp-Phe-NH2 | Drug Info | Ki = 3600 nM | [4] | ||
VL-0395 | Drug Info | IC50 = 197 nM | [8] | ||
VL-0494 | Drug Info | IC50 = 197 nM | [6] | ||
VL-0699 | Drug Info | IC50 = 12700 nM | [3] | ||
VL-1499 | Drug Info | IC50 = 4010 nM | [8] | ||
VL-2799 | Drug Info | IC50 = 3240 nM | [7] | ||
Action against Disease Model | Drug Info | Dexloxigl uMide, the active enantiomer of loxigl uMide, interacts competitively with CCK(1) receptors as determined in preclinical studies, such as specific radioligand binding assays or functional studies on isolated guinea pig gallbladder, where it inhibited smooth muscle cell contractions induced by cholecystokinin-octapeptide (CCK-8), the most prominent active forms of cholecystokinin. Dexloxigl uMide has a potent antagonistic effect, of a competitive nature, on h uMan gallbladder cholecystokinin type 1 receptors. In isolated h uMan gallbladder, dexloxigl uMide produced a concentration-dependent rightward shift of the cholecystokinin-octapeptide curve, without affecting its maximal response | [15] | ||
References | |||||
REF 1 | Hybrid cholecystokinin-A antagonists based on molecular modeling of lorglumide and L-364,718. J Med Chem. 1992 Mar 20;35(6):1042-9. | ||||
REF 2 | Design and synthesis of novel hydrazide-linked bifunctional peptides as delta/mu opioid receptor agonists and CCK-1/CCK-2 receptor antagonists. J Med Chem. 2006 Mar 9;49(5):1773-80. | ||||
REF 3 | Anthranilic acid based CCK1 receptor antagonists and CCK-8 have a common step in their "receptor desmodynamic processes". J Med Chem. 2006 Apr 20;49(8):2456-62. | ||||
REF 4 | Structure-activity relationships of bifunctional peptides based on overlapping pharmacophores at opioid and cholecystokinin receptors. J Med Chem. 2006 May 18;49(10):2868-75. | ||||
REF 5 | Partial retro-inverso, retro, and inverso modifications of hydrazide linked bifunctional peptides for opioid and cholecystokinin (CCK) receptors. J Med Chem. 2007 Jan 11;50(1):165-8. | ||||
REF 6 | Synthesis and evaluation of novel benzimidazole derivative [Bz-Im] and its radio/biological studies. Bioorg Med Chem Lett. 2007 May 15;17(10):2749-55. | ||||
REF 7 | Anthranilic acid based CCK1 receptor antagonists: blocking the receptor with the same 'words' of the endogenous ligand. Bioorg Med Chem. 2009 Mar 15;17(6):2336-50. | ||||
REF 8 | 2D-QSAR and 3D-QSAR/CoMFA analyses of the N-terminal substituted anthranilic acid based CCK(1) receptor antagonists: 'Hic Rhodus, hic saltus'. Bioorg Med Chem. 2009 Jul 15;17(14):5198-206. | ||||
REF 9 | Synthesis and biological activities of pseudopeptide analogues of the C-terminal heptapeptide of cholecystokinin. On the importance of the peptide ... J Med Chem. 1987 Aug;30(8):1366-73. | ||||
REF 10 | Full agonists of CCK8 containing a nonhydrolyzable sulfated tyrosine residue. J Med Chem. 1989 Feb;32(2):445-9. | ||||
REF 11 | Synthesis and binding affinities of cyclic and related linear analogues of CCK8 selective for central receptors. J Med Chem. 1989 Jun;32(6):1184-90. | ||||
REF 12 | Synthesis and binding affinities of analogues of cholecystokinin-(30-33) as probes for central nervous system cholecystokinin receptors. J Med Chem. 1987 Apr;30(4):729-32. | ||||
REF 13 | High-affinity and potent, water-soluble 5-amino-1,4-benzodiazepine CCKB/gastrin receptor antagonists containing a cationic solubilizing group. J Med Chem. 1994 Mar 18;37(6):719-21. | ||||
REF 14 | Synthesis and stereochemical structure-activity relationships of 1,3-dioxoperhydropyrido[1,2-c]pyrimidine derivatives: potent and selective cholecy... J Med Chem. 1997 Oct 10;40(21):3402-7. | ||||
REF 15 | Inhibition of 11beta-hydroxysteroid dehydrogenase type 1 as a promising therapeutic target. Drug Discov Today. 2007 Jul;12(13-14):504-20. | ||||
REF 16 | NPY Y1 and Y5 receptor selective antagonists as anti-obesity drugs. Curr Top Med Chem. 2007;7(17):1721-33. | ||||
REF 17 | Progress in developing cholecystokinin (CCK)/gastrin receptor ligands that have therapeutic potential. Curr Opin Pharmacol. 2007 Dec;7(6):583-92. | ||||
If You Find Any Error in Data or Bug in Web Service, Please Kindly Report It to Dr. Zhou and Dr. Zhang.