Target Information
Target General Information | Top | |||||
---|---|---|---|---|---|---|
Target ID |
T23673
(Former ID: TTDI02287)
|
|||||
Target Name |
Proto-oncogene c-RAF (c-RAF)
|
|||||
Synonyms |
cRaf; Raf-1; RAF proto-oncogene serine/threonine-protein kinase; RAF
Click to Show/Hide
|
|||||
Gene Name |
RAF1
|
|||||
Target Type |
Clinical trial target
|
[1] | ||||
Disease | [+] 3 Target-related Diseases | + | ||||
1 | Diabetes mellitus [ICD-11: 5A10] | |||||
2 | Indeterminate colitis [ICD-11: DD72] | |||||
3 | Solid tumour/cancer [ICD-11: 2A00-2F9Z] | |||||
Function |
RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kinases (MAPK3/ERK1 and MAPK1/ERK2). The phosphorylated form of RAF1 (on residues Ser-338 and Ser-339, by PAK1) phosphorylates BAD/Bcl2-antagonist of cell death at 'Ser-75'. Phosphorylates adenylyl cyclases: ADCY2, ADCY5 and ADCY6, resulting in their activation. Phosphorylates PPP1R12A resulting in inhibition of the phosphatase activity. Phosphorylates TNNT2/cardiac muscle troponin T. Can promote NF-kB activation and inhibit signal transducers involved in motility (ROCK2), apoptosis (MAP3K5/ASK1 and STK3/MST2), proliferation and angiogenesis (RB1). Can protect cells from apoptosis also by translocating to the mitochondria where it binds BCL2 and displaces BAD/Bcl2-antagonist of cell death. Regulates Rho signaling and migration, and is required for normal wound healing. Plays a role in the oncogenic transformation of epithelial cells via repression of the TJ protein, occludin (OCLN) by inducing the up-regulation of a transcriptional repressor SNAI2/SLUG, which induces down-regulation of OCLN. Restricts caspase activation in response to selected stimuli, notably Fas stimulation, pathogen-mediated macrophage apoptosis, and erythroid differentiation. Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation.
Click to Show/Hide
|
|||||
BioChemical Class |
Kinase
|
|||||
UniProt ID | ||||||
EC Number |
EC 2.7.11.1
|
|||||
Sequence |
MEHIQGAWKTISNGFGFKDAVFDGSSCISPTIVQQFGYQRRASDDGKLTDPSKTSNTIRV
FLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARLDWNTDAAS LIGEELQVDFLDHVPLTTHNFARKTFLKLAFCDICQKFLLNGFRCQTCGYKFHEHCSTKV PTMCVDWSNIRQLLLFPNSTIGDSGVPALPSLTMRRMRESVSRMPVSSQHRYSTPHAFTF NTSSPSSEGSLSQRQRSTSTPNVHMVSTTLPVDSRMIEDAIRSHSESASPSALSSSPNNL SPTGWSQPKTPVPAQRERAPVSGTQEKNKIRPRGQRDSSYYWEIEASEVMLSTRIGSGSF GTVYKGKWHGDVAVKILKVVDPTPEQFQAFRNEVAVLRKTRHVNILLFMGYMTKDNLAIV TQWCEGSSLYKHLHVQETKFQMFQLIDIARQTAQGMDYLHAKNIIHRDMKSNNIFLHEGL TVKIGDFGLATVKSRWSGSQQVEQPTGSVLWMAPEVIRMQDNNPFSFQSDVYSYGIVLYE LMTGELPYSHINNRDQIIFMVGRGYASPDLSKLYKNCPKAMKRLVADCVKKVKEERPLFP QILSSIELLQHSLPKINRSASEPSLHRAAHTEDINACTLTTSPRLPVF Click to Show/Hide
|
|||||
3D Structure | Click to Show 3D Structure of This Target | AlphaFold | ||||
HIT2.0 ID | T78VUO |
Drugs and Modes of Action | Top | |||||
---|---|---|---|---|---|---|
Clinical Trial Drug(s) | [+] 1 Clinical Trial Drugs | + | ||||
1 | Semapimod | Drug Info | Phase 2 | Inflammatory bowel disease | [3] | |
Mode of Action | [+] 1 Modes of Action | + | ||||
Modulator | [+] 1 Modulator drugs | + | ||||
1 | Semapimod | Drug Info | [1] |
Cell-based Target Expression Variations | Top | |||||
---|---|---|---|---|---|---|
Cell-based Target Expression Variations |
Drug Binding Sites of Target | Top | |||||
---|---|---|---|---|---|---|
Ligand Name: L-serine-O-phosphate | Ligand Info | |||||
Structure Description | Crystal Structure of human 14-3-3 sigma in Complex with Raf1 peptide (6mer) and stabilisator Fusicoccin | PDB:3IQV | ||||
Method | X-ray diffraction | Resolution | 1.20 Å | Mutation | No | [6] |
PDB Sequence |
QRSTT
|
|||||
|
||||||
Click to View More Binding Site Information of This Target and Ligand Pair | ||||||
Ligand Name: (1E)-5-(1-piperidin-4-yl-3-pyridin-4-yl-1H-pyrazol-4-yl)-2,3-dihydro-1H-inden-1-one oxime | Ligand Info | |||||
Structure Description | Crystal structure of c-raf (raf-1) | PDB:3OMV | ||||
Method | X-ray diffraction | Resolution | 4.00 Å | Mutation | No | [7] |
PDB Sequence |
YYWEIEASEV
349 MLSTRIGSGS359 FGTVYKGKWH369 GDVAVKILKV379 VDPTPEQFQA389 FRNEVAVLRK 399 TRHVNILLFM409 GYMTKDNLAI419 VTQWCEGSSL429 YKHLHVQETK439 FQMFQLIDIA 449 RQTAQGMDYL459 HAKNIIHRDM469 KSNNIFLHEG479 LTVKIGDFGL489 ATVPTGSVLW 511 MAPEVIRMQD521 NNPFSFQSDV531 YSYGIVLYEL541 MTGELPYSHI551 NNRDQIIFMV 561 GRGYASPDLS571 KLYKNCPKAM581 KRLVADCVKK591 VKEERPLFPQ601 ILSSIELLQH 611 SLPK
|
|||||
|
ILE355
3.215
GLY356
4.955
SER357
4.543
SER359
4.541
VAL363
3.097
ALA373
3.648
VAL374
4.439
LYS375
2.996
GLU393
3.696
LEU397
4.938
LEU406
4.380
|
|||||
Click to View More Binding Site Information of This Target with Different Ligands |
Different Human System Profiles of Target | Top |
---|---|
Human Similarity Proteins
of target is determined by comparing the sequence similarity of all human proteins with the target based on BLAST. The similarity proteins for a target are defined as the proteins with E-value < 0.005 and outside the protein families of the target.
A target that has fewer human similarity proteins outside its family is commonly regarded to possess a greater capacity to avoid undesired interactions and thus increase the possibility of finding successful drugs
(Brief Bioinform, 21: 649-662, 2020).
Human Tissue Distribution
of target is determined from a proteomics study that quantified more than 12,000 genes across 32 normal human tissues. Tissue Specificity (TS) score was used to define the enrichment of target across tissues.
The distribution of targets among different tissues or organs need to be taken into consideration when assessing the target druggability, as it is generally accepted that the wider the target distribution, the greater the concern over potential adverse effects
(Nat Rev Drug Discov, 20: 64-81, 2021).
Human Pathway Affiliation
of target is determined by the life-essential pathways provided on KEGG database. The target-affiliated pathways were defined based on the following two criteria (a) the pathways of the studied target should be life-essential for both healthy individuals and patients, and (b) the studied target should occupy an upstream position in the pathways and therefore had the ability to regulate biological function.
Targets involved in a fewer pathways have greater likelihood to be successfully developed, while those associated with more human pathways increase the chance of undesirable interferences with other human processes
(Pharmacol Rev, 58: 259-279, 2006).
Biological Network Descriptors
of target is determined based on a human protein-protein interactions (PPI) network consisting of 9,309 proteins and 52,713 PPIs, which were with a high confidence score of ≥ 0.95 collected from STRING database.
The network properties of targets based on protein-protein interactions (PPIs) have been widely adopted for the assessment of target’s druggability. Proteins with high node degree tend to have a high impact on network function through multiple interactions, while proteins with high betweenness centrality are regarded to be central for communication in interaction networks and regulate the flow of signaling information
(Front Pharmacol, 9, 1245, 2018;
Curr Opin Struct Biol. 44:134-142, 2017).
Human Similarity Proteins
Human Tissue Distribution
Human Pathway Affiliation
Biological Network Descriptors
|
Note:
If a protein has TS (tissue specficity) scores at least in one tissue >= 2.5, this protein is called tissue-enriched (including tissue-enriched-but-not-specific and tissue-specific). In the plots, the vertical lines are at thresholds 2.5 and 4.
|
KEGG Pathway | Pathway ID | Affiliated Target | Pathway Map |
---|---|---|---|
MAPK signaling pathway | hsa04010 | Affiliated Target |
|
Class: Environmental Information Processing => Signal transduction | Pathway Hierarchy | ||
ErbB signaling pathway | hsa04012 | Affiliated Target |
|
Class: Environmental Information Processing => Signal transduction | Pathway Hierarchy | ||
Ras signaling pathway | hsa04014 | Affiliated Target |
|
Class: Environmental Information Processing => Signal transduction | Pathway Hierarchy | ||
Rap1 signaling pathway | hsa04015 | Affiliated Target |
|
Class: Environmental Information Processing => Signal transduction | Pathway Hierarchy | ||
cGMP-PKG signaling pathway | hsa04022 | Affiliated Target |
|
Class: Environmental Information Processing => Signal transduction | Pathway Hierarchy | ||
cAMP signaling pathway | hsa04024 | Affiliated Target |
|
Class: Environmental Information Processing => Signal transduction | Pathway Hierarchy | ||
Chemokine signaling pathway | hsa04062 | Affiliated Target |
|
Class: Organismal Systems => Immune system | Pathway Hierarchy | ||
FoxO signaling pathway | hsa04068 | Affiliated Target |
|
Class: Environmental Information Processing => Signal transduction | Pathway Hierarchy | ||
Sphingolipid signaling pathway | hsa04071 | Affiliated Target |
|
Class: Environmental Information Processing => Signal transduction | Pathway Hierarchy | ||
Phospholipase D signaling pathway | hsa04072 | Affiliated Target |
|
Class: Environmental Information Processing => Signal transduction | Pathway Hierarchy | ||
Autophagy - animal | hsa04140 | Affiliated Target |
|
Class: Cellular Processes => Transport and catabolism | Pathway Hierarchy | ||
mTOR signaling pathway | hsa04150 | Affiliated Target |
|
Class: Environmental Information Processing => Signal transduction | Pathway Hierarchy | ||
PI3K-Akt signaling pathway | hsa04151 | Affiliated Target |
|
Class: Environmental Information Processing => Signal transduction | Pathway Hierarchy | ||
Apoptosis | hsa04210 | Affiliated Target |
|
Class: Cellular Processes => Cell growth and death | Pathway Hierarchy | ||
Cellular senescence | hsa04218 | Affiliated Target |
|
Class: Cellular Processes => Cell growth and death | Pathway Hierarchy | ||
Vascular smooth muscle contraction | hsa04270 | Affiliated Target |
|
Class: Organismal Systems => Circulatory system | Pathway Hierarchy | ||
Axon guidance | hsa04360 | Affiliated Target |
|
Class: Organismal Systems => Development and regeneration | Pathway Hierarchy | ||
VEGF signaling pathway | hsa04370 | Affiliated Target |
|
Class: Environmental Information Processing => Signal transduction | Pathway Hierarchy | ||
Apelin signaling pathway | hsa04371 | Affiliated Target |
|
Class: Environmental Information Processing => Signal transduction | Pathway Hierarchy | ||
Focal adhesion | hsa04510 | Affiliated Target |
|
Class: Cellular Processes => Cellular community - eukaryotes | Pathway Hierarchy | ||
Gap junction | hsa04540 | Affiliated Target |
|
Class: Cellular Processes => Cellular community - eukaryotes | Pathway Hierarchy | ||
Signaling pathways regulating pluripotency of stem cells | hsa04550 | Affiliated Target |
|
Class: Cellular Processes => Cellular community - eukaryotes | Pathway Hierarchy | ||
Neutrophil extracellular trap formation | hsa04613 | Affiliated Target |
|
Class: Organismal Systems => Immune system | Pathway Hierarchy | ||
C-type lectin receptor signaling pathway | hsa04625 | Affiliated Target |
|
Class: Organismal Systems => Immune system | Pathway Hierarchy | ||
JAK-STAT signaling pathway | hsa04630 | Affiliated Target |
|
Class: Environmental Information Processing => Signal transduction | Pathway Hierarchy | ||
Natural killer cell mediated cytotoxicity | hsa04650 | Affiliated Target |
|
Class: Organismal Systems => Immune system | Pathway Hierarchy | ||
T cell receptor signaling pathway | hsa04660 | Affiliated Target |
|
Class: Organismal Systems => Immune system | Pathway Hierarchy | ||
B cell receptor signaling pathway | hsa04662 | Affiliated Target |
|
Class: Organismal Systems => Immune system | Pathway Hierarchy | ||
Fc epsilon RI signaling pathway | hsa04664 | Affiliated Target |
|
Class: Organismal Systems => Immune system | Pathway Hierarchy | ||
Fc gamma R-mediated phagocytosis | hsa04666 | Affiliated Target |
|
Class: Organismal Systems => Immune system | Pathway Hierarchy | ||
Long-term potentiation | hsa04720 | Affiliated Target |
|
Class: Organismal Systems => Nervous system | Pathway Hierarchy | ||
Neurotrophin signaling pathway | hsa04722 | Affiliated Target |
|
Class: Organismal Systems => Nervous system | Pathway Hierarchy | ||
Serotonergic synapse | hsa04726 | Affiliated Target |
|
Class: Organismal Systems => Nervous system | Pathway Hierarchy | ||
Long-term depression | hsa04730 | Affiliated Target |
|
Class: Organismal Systems => Nervous system | Pathway Hierarchy | ||
Regulation of actin cytoskeleton | hsa04810 | Affiliated Target |
|
Class: Cellular Processes => Cell motility | Pathway Hierarchy | ||
Insulin signaling pathway | hsa04910 | Affiliated Target |
|
Class: Organismal Systems => Endocrine system | Pathway Hierarchy | ||
GnRH signaling pathway | hsa04912 | Affiliated Target |
|
Class: Organismal Systems => Endocrine system | Pathway Hierarchy | ||
Progesterone-mediated oocyte maturation | hsa04914 | Affiliated Target |
|
Class: Organismal Systems => Endocrine system | Pathway Hierarchy | ||
Estrogen signaling pathway | hsa04915 | Affiliated Target |
|
Class: Organismal Systems => Endocrine system | Pathway Hierarchy | ||
Melanogenesis | hsa04916 | Affiliated Target |
|
Class: Organismal Systems => Endocrine system | Pathway Hierarchy | ||
Prolactin signaling pathway | hsa04917 | Affiliated Target |
|
Class: Organismal Systems => Endocrine system | Pathway Hierarchy | ||
Thyroid hormone signaling pathway | hsa04919 | Affiliated Target |
|
Class: Organismal Systems => Endocrine system | Pathway Hierarchy | ||
Oxytocin signaling pathway | hsa04921 | Affiliated Target |
|
Class: Organismal Systems => Endocrine system | Pathway Hierarchy | ||
Relaxin signaling pathway | hsa04926 | Affiliated Target |
|
Class: Organismal Systems => Endocrine system | Pathway Hierarchy | ||
Parathyroid hormone synthesis, secretion and action | hsa04928 | Affiliated Target |
|
Class: Organismal Systems => Endocrine system | Pathway Hierarchy | ||
GnRH secretion | hsa04929 | Affiliated Target |
|
Class: Organismal Systems => Endocrine system | Pathway Hierarchy | ||
Growth hormone synthesis, secretion and action | hsa04935 | Affiliated Target |
|
Class: Organismal Systems => Endocrine system | Pathway Hierarchy | ||
Click to Show/Hide the Information of Affiliated Human Pathways |
Degree | 35 | Degree centrality | 3.76E-03 | Betweenness centrality | 1.41E-03 |
---|---|---|---|---|---|
Closeness centrality | 2.49E-01 | Radiality | 1.43E+01 | Clustering coefficient | 1.82E-01 |
Neighborhood connectivity | 3.79E+01 | Topological coefficient | 5.89E-02 | Eccentricity | 11 |
Download | Click to Download the Full PPI Network of This Target | ||||
Chemical Structure based Activity Landscape of Target | Top |
---|---|
Target Poor or Non Binders | Top | |||||
---|---|---|---|---|---|---|
Target Poor or Non Binders |
Target Regulators | Top | |||||
---|---|---|---|---|---|---|
Target-regulating microRNAs | ||||||
Target-interacting Proteins |
Target Profiles in Patients | Top | |||||
---|---|---|---|---|---|---|
Target Expression Profile (TEP) |
References | Top | |||||
---|---|---|---|---|---|---|
REF 1 | Specific inhibition of c-Raf activity by semapimod induces clinical remission in severe Crohn's disease. J Immunol. 2005 Aug 15;175(4):2293-300. | |||||
REF 2 | Clinical pipeline report, company report or official report of BeiGene. | |||||
REF 3 | ClinicalTrials.gov (NCT00038766) CNI-1493 for Treatment of Moderate to Severe Crohn's Disease. U.S. National Institutes of Health. | |||||
REF 4 | Clinical pipeline report, company report or official report of the Pharmaceutical Research and Manufacturers of America (PhRMA) | |||||
REF 5 | Clinical pipeline report, company report or official report of Hanmi Pharmaceutical. | |||||
REF 6 | Impaired binding of 14-3-3 to C-RAF in Noonan syndrome suggests new approaches in diseases with increased Ras signaling. Mol Cell Biol. 2010 Oct;30(19):4698-711. | |||||
REF 7 | RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature. 2010 Mar 18;464(7287):431-5. |
If You Find Any Error in Data or Bug in Web Service, Please Kindly Report It to Dr. Zhou and Dr. Zhang.